赵凯的个人资料

学历: 博士研究生

学位: 博士

职称: 副教授

是否硕士研究生导师: 是

学科专长:计算机视觉、多视角几何与机器学习等方向的研究

办公室: 上海大学宝山校区东区12号楼527室

通信地址(邮政编码):上海市南陈路333号上海大学通信学院(200444)

个人主页:https://kaizhao.net

电子邮件:zhaokai@shu.edu.cn

赵凯的个人简介

个人简介:

赵凯,博士,现任上海大学通信与信息工程学院副教授。2025 8 月加入上海大学,入选上海市及国家级海外高层次人才引进计划。

赵凯老师本科和硕士均毕业于上海大学,硕士期间师从沈为教授(现上海交通大学教授);2020 年获南开大学计算机科学与技术专业博士学位,师从程明明教授。博士毕业后入选腾讯校招技术大咖(T9 级技术专家,腾讯校招最高技术职级),并在腾讯优图实验室担任高级研究员。2022 年起在加州大学洛杉矶分校(UCLA)从事博士后研究工作,2025 8 月回国加入上海大学任教。

赵凯老师主要从事计算机视觉、多视角几何与机器学习等方向的研究,在相关领域的国际顶级期刊和会议上发表论文 20 余篇,包括 IEEE TPAMICVPRNeurIPSICCVECCV 等,多篇论文入选 ESI 高被引论文,谷歌学术总引用 6,000 余次。其关于掌纹识别的研究成果曾被《麻省理工科技评论》报道,并成功应用于微信刷掌支付及北京地铁大兴机场线刷掌入站等实际场景。赵凯老师同时是多个知名开源项目(如 PyTorchmmdetection)的活跃贡献者。更多信息详见赵凯老师个人主页 https://kaizhao.net/cn .

教育经历

Mar 2022~Jul 2025: 博士后,加州大学洛杉矶分校,洛杉矶。

Sep 2017~Jun 2020: 博士生,南开大学,天津。

Sep 2014~Jun 2017: 硕士生,上海大学,上海。

Sep 2010~Jun 2014: 本科生,上海大学,上海。

工作经历

Oct 2020~Feb 2022: 高级研究员,腾讯优图实验室,上海。

Sep 2018~Jan 2019: 研究实习生,松下研发中心,新加坡。

Jul 2016~Nov 2016: 研究实习生,腾讯优图实验室,上海。

代表性学术论文

Kai Zhao, Liting Ruan, Haoran Jiang, Xiaoqiang Zhu, Xianchao Zhang, Dan Zeng. Beyond Predictive Resampling: Learning Input-Agnostic Downsampling for Efficient Aligned Vision Recognition. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2026.(人工智能顶会,CCF A类会议,口头报告论文,Top 4.5%

Kai Zhao, Wubang Yuan, Zheng Wang, Guanyi Li, Xiaoqiang Zhu, Deng-Ping Fan, Dan Zeng.Open-Vocabulary Camouflaged Object Segmentation with Cascaded Vision Language Models. Computational Visual Media, 2025.(影响因子 18.3

Kaifeng Pang, Kai Zhao*, Alex Ling Yu Hung, Haoxin Zheng, Ran Yan, Kyunghyun Sung.NExpR: Neural Explicit Representation for Fast Arbitrary-Scale Medical Image Super-Resolution. Computers in Biology and Medicine, 2025.(影响因子 7)(* 通讯作者)

Kai Zhao, Alex Ling Yu Hung, Kaifeng Pang, Haoxin Zheng, Kyunghyun Sung.MRI Super-Resolution with Partial Diffusion Models. IEEE Transactions on Medical Imaging, 2024.(影响因子 11.3

Kai Zhao, Zuojie He, Alex Hung, Dan Zeng.Dominant Shuffle: A Simple Yet Powerful Data Augmentation for Time-Series Prediction.arXiv, 2024.

Kai Zhao, Kaifeng Pang, Alex Ling Yu Hung, Haoxin Zheng, Ran Yan, Kyunghyun Sung.  A Deep Learning-Based Framework for Highly Accelerated Prostate MR Dispersion Imaging.Cancers, 2024.(影响因子 4.5

Alex Ling Yu Hung, Haoxin Zheng, Kai Zhao, Kaifeng Pang, Demetri Terzopoulos, Kyunghyun Sung. Cross-Slice Attention and Evidential Critical Loss for Uncertainty-Aware Prostate Cancer Detection.International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2024.

Kai Zhao, Tao Wang, Ruixin Zhang, Wei Shen. Adaptive Feature Alignment for Adversarial Training. Pattern Recognition Letters, 2024.(影响因子 3.9

Alex Ling Yu Hung, Haoxin Zheng, Kai Zhao, Kaifeng Pang, Ran Yan, Steven S. Raman, Demetri Terzopoulos, Kyunghyun Sung. Med-cDiff: Conditional Medical Image Generation with Diffusion Models. Bioengineering, 2023.

Yating Xu, Kai Zhao, Liangang Zhang, Mengyao Zhu, Dan Zeng. Hyperspectral Anomaly Detection with Vision Transformer and Adversarial Refinement. International Journal of Remote Sensing, 2023.

Kai Zhao, Lei Shen, Yingyi Zhang, Chuhan Zhou, Tao Wang, Ruixin Zhang, Shouhong Ding, Wei Jia, Wei Shen. BézierPalm: A Free Lunch for Palmprint Recognition. European Conference on Computer Vision (ECCV), 2022.

Xuehui Wang, Kai Zhao, Ruixin Zhang, Shouhong Ding, Yan Wang, Wei Shen.ContrastMask: Contrastive Learning to Segment Everything. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. (人工智能顶会,CCF A类会议)

Lei Shen, Yingyi Zhang, Kai Zhao*, Ruixin Zhang, Wei Shen. Distribution Alignment for Cross-Device Palmprint Recognition. Pattern Recognition, 2022.(影响因子 7.5)(* 通讯作者)

Jia Li, Junjie Zhang, Fansheng Chen, Kai Zhao, Dan Zeng. Adaptive Material Matching for Hyperspectral Imagery Destriping. IEEE Transactions on Geoscience and Remote Sensing, 2022.

Kai Zhao, Xuehui Wang, Xingyu Chen, Ruixin Zhang, Wei Shen. Rethinking Mask Heads for Partially Supervised Instance Segmentation. Neurocomputing, 2022.(影响因子 5.5

Kai Zhao, Qi Han, Chang-Bin Zhang, Jun Xu, Ming-Ming Cheng. Deep Hough Transform for Semantic Line Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.(影响因子 20.8

Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, Philip Torr.Res2Net: A New Multi-Scale Backbone Architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.(影响因子 20.8

Kai Zhao, Shang-Hua Gao, Wenguan Wang, Ming-Ming Cheng. Optimizing the F-measure for Threshold-Free Salient Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019. (人工智能顶会,CCF A类会议)

Kai Zhao, Jingyi Xu, Ming-Ming Cheng. RegularFace: Deep Face Recognition via Exclusive Regularization. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. (人工智能顶会,CCF A类会议)

Wei Shen, Yilu Guo, Yan Wang, Kai Zhao, Bo Wang, Alan Yuille. Deep Differentiable Random Forests for Age Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.(影响因子 20.8

Kai Zhao, Wei Shen, Shang-Hua Gao, Dandan Li, Ming-Ming Cheng. Hi-Fi: Hierarchical Feature Integration for Skeleton Detection. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI), 2018. (人工智能顶会,CCF A类会议)

Wei Shen, Yilu Guo, Yan Wang, Kai Zhao, Bo Wang, Alan L. Yuille. Deep Regression Forests for Age Estimation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. (人工智能顶会,CCF A类会议)

Wei Shen, Kai Zhao, Yuan Jiang, Yan Wang, Xiang Bai, Alan Yuille. DeepSkeleton: Learning Multi-Task Scale-Associated Deep Side Outputs for Object Skeleton Extraction in Natural Images. IEEE Transactions on Image Processing, 2017.

Wei Shen, Kai Zhao, Yilu Guo, Alan L. Yuille. Label Distribution Learning Forests. Advances in Neural Information Processing Systems (NeurIPS), 2017. (人工智能顶会,CCF A类会议,上海大学第一篇第一单位 NeurIPS 论文)

Wei Shen, Kai Zhao, Yuan Jiang, Yan Wang, Zhijiang Zhang, Xiang Bai. Object Skeleton Extraction in Natural Images by Fusing Scale-Associated Deep Side Outputs. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. (人工智能顶会,CCF A类会议,上海大学第一篇第一单位 CVPR论文)

执导过的学生:

Katarina ChiamUCLA2023 级硕士生。

Sohaib NaimUCLA2022 级博士生。

李润嘉,腾讯优图,实习生。去向:牛津大学 VGG 组博士。

庞凯风,UCLA2022 级硕士生。去向:UCLA 攻读博士。

Alex HungUCLA2020 级博士生。

郑昊昕,UCLA2020 级博士生。去向:亚马逊。

王雪辉,上海交通大学,2020 级博士生。

高尚华,南开大学,2018 级博士生。去向:哈佛大学博士后。